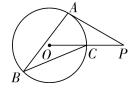
2019 年浙江省初中毕业学业考试考试(嘉兴卷)

- 一、选择题(本题有10小题, 每题3分, 共30分.请选出各题中唯一的正确选项, 不选、多选、错选, 均不得分)
- 1. -2019 的相反数是(
 - A. 2019
- B. -2019
- C. $\frac{1}{2019}$
- 2. 2019年1月3日10时26分,"嫦娥四号"探测器飞行约380000千米,实现人类探测器首次在月球背面软着 陆,数据380000 用科学记数法表示为()
 - A. 38×10^{4}
- B. 3.8×10^4
- C. 3.8×10^{5}
- D. 0.38×10^6
- 3. 如图是由四个相同的小正方体组成的立体图形,它的俯视图为(

- 4.2019年5月26日第5届中国国际大数据产业博览会召开,某市在五届数博会上的产业签约金额的折线统计图 如图,下列说法正确的是(某市在五届数博会上的产业签约金额统计图
 - A. 签约金额逐年增加
 - B. 与上一年相比, 2019年的签约金额的增长量最多
 - C. 签约金额的年增长速度最快的是 2016 年
 - D. 2018年的签约金额比 2017年降低了 22.98%

- 5. 如图是一个 2×2 的方阵,其中每行,每列的两数和相等,则 a 可以是(
 - A. tan60°
- B-1
- C. 0
- D 12019

3√8	2°		
a	1-21		

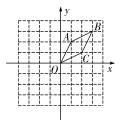

- 6. 已经四个实数 a、b、c、d,若 a>b,c>d,则(
 - A. a+c>b+d
- B. a-c>b-d
- C. ac > bd
- 7. 如图,已知 $\odot O$ 上三点 A, B、C, 半径 OC=1, $\angle ABC=30^{\circ}$,切线 PA 交 OC 延长线 于点 P, 则 PA 的长为(

B.
$$\sqrt{3}$$

C.
$$\sqrt{2}$$
 D. $\frac{1}{2}$

D.
$$\frac{1}{2}$$

8. 中国清代算书《御制数理精蕴》中有这样一题: "马四匹、牛六头,共价四十八两(我国古代货币单位);马 三匹、牛五头,共价三十八两.问马、牛各价几何?"设马每匹x两,牛每头y两,根据题意可列方程组为(


A.
$$\begin{cases} 4x + 6y = 38 \\ 3x + 5y = 48 \end{cases}$$

B.
$$\begin{cases} 4y + 6x = 48 \\ 3y + 5x = 38 \end{cases}$$

C.
$$\begin{cases} 4x + 6y = 48 \\ 5x + 3y = 28 \end{cases}$$

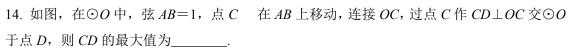
D.
$$\begin{cases} 4x + 6y = 48 \\ 3x + 5y = 38 \end{cases}$$

9. 如图,在直角坐标系中,已知菱形 OABC 的顶点 A(1, 2), B(3, 3), 作菱形 OABC 关于 v轴的对称图形 OA'B'C', 再作图形 OA'B'C'关于点 O 的中心对称图形 OA''B''C'', 则点 C 的 对应点 C"的坐标是()

A.
$$(2, -1)$$

B.
$$(1, -2)$$

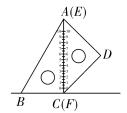
$$C. (-2, 1)$$


D.
$$(-2, -1)$$

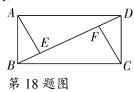
10. 小飞研究二次函数 $y = -(x-m)^2 - m + 1(m)$ 为常数)性质时,有如下结论:①这个函数图象的顶点始终在直线 y=-x+1 上;②存在一个 m 的值,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形;③点 $A(x_1,y_1)$ 与点 $B(x_2, y_2)$ 在函数图象上,若 $x_1 < x_2, x_1 + x_2 > 2m$,则 $y_1 < y_2$; ④ 当 -1 < x < 2 时,y 随 x 的增大而增大,则 m 的取值范围为 $m \ge 2$,其中错误结论的序号是()

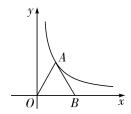
- A. ①
- B. ②

- C. ③
- D. 4

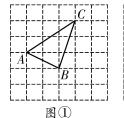

- 二、填空题(本题有6小题, 每题4分, 共24分)
- 11. 分解因式: $x^2-5x=$ _____.
- 12. 从甲、乙、丙三人中任选两人参加"青年志愿者"活动,甲被选中的概率为_____
- 13. 数轴上有两个实数 a, b, 且 a>0, b<0, a+b<0, 则四个数 a, b, -a, -b 的大小关系为_____(用 "<"号连接).

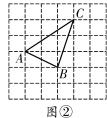
15. 在 $x^2+(_____)+4=0$ 的括号中添加一个关于x的一次项,使方程有两个相等的实数根.


16. 如图,一副含 30°和 45°角的三角板 ABC 和 EDF 拼合在一个平面上,边 AC 与 EF 重合, AC=12~cm, 当点 E 从点 A 出发沿 AC 方向滑动时,点 F 同时从点 C 出发沿射线 BC 方向滑动,当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长为______ cm; 连接 BD,则 $\triangle ABD$ 的面积最大值为______ cm^2 .

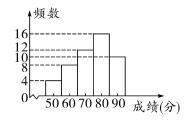

三、解答题(本题有 8 小题, 每 17~19 题每题 6 分, 第 20、21 题每题 8 分, 第 22、23 题每题 10 分, 第 24 题 12 分, 共 66 分)

17. 小明解答 "先化简,再求值: $\frac{1}{x+1} + \frac{2}{x^2-1}$,其中 $x = \sqrt{3} + 1$." 的过程如图,请指出解答过程中错误步骤的序号,并写出正确的解答过程.


18. 如图,在矩形 ABCD 中,点 E, F 在对角线 BD 上,请添加一个条件,使得结论"AE=CF"成立,并加以证明.



- 19. 如图,在直角坐标系中,已知点 B(4, 0),等边三角形 OAB 的顶点 A 在反比例函数 $y=\frac{k}{r}$ 的图象上.
- (1)求反比例函数的表达式;
- (2)把 $\triangle OAB$ 向右平移 a 个单位长度,对应得到 $\triangle O'A'B'$,当这个函数图象经过 $\triangle O'A'B'$ 一边的中点时,求 a 的值.


- 20. 在 6×6 的方格纸中,点A,B,C都在格点上,按要求画图;
 - (1)在图①中找一个格点 D,使以点 A,B,C,D 为顶点的四边形是平行四边形;
 - (2)在图②中仅用无刻度的直尺,把线段 AB 三等分(保留画图痕迹,不写画法).

- 21. 在"创全国文明城市"活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:
- 【信息一】A 小区 50 名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值);

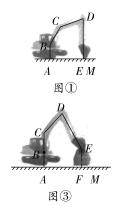
A 小区 50 名居民成绩的频数直方图

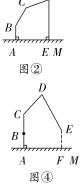
【信息二】上图中,从左往右第四组的成绩如下:

75	75	79	79	79	79	80	80
81	82	82	83	83	84	84	84

【信息三】A、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据

如下(部分空缺):

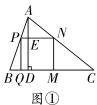

小区	平均数	中位数	众数	优秀率	方差
A	75.1		79	40%	277
В	75.1	77	76	45%	211

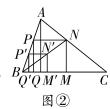

根据以上信息,回答下列问题:

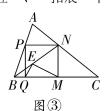
- (1)求 A 小区 50 名居民成绩的中位数;
- (2)请估计 A 小区 500 名居民中能超过平均数的有多少人?
- (3)请尽量从多个角度比较,分析 A、B 两小区居民掌握垃圾分类知识的情况.

- 22. 某挖掘机的底座高 AB=0.8 米,动臂 BC=1.2 米,CD=1.5 米,BC与 CD 的固定夹角 $\angle BCD$ =140°,初始位置如图①,斗杆顶点 D与铲斗顶点 E 所在直线 DE 垂直地面 AM 于点 E,测得 $\angle CDE$ =70°(示意图②),工作时如图③,动臂 BC 会绕点 B 转动,当点 A,B,C 在同一直线时,斗杆顶点 D 升至最高点(示意图④).
- (1)求挖掘机在初始位置时动臂 BC 与 AB 夹角 $\angle ABC$ 的度数;
- (2)问斗杆顶点 D 的最高点比初始位置高多少米? (精确到 0.1 米)

(参考数据: $sin50^{\circ} \approx 0.77$, $cos50^{\circ} \approx 0.64$, $sin70^{\circ} \approx 0.94$, $cos70^{\circ} \approx 0.34$, $\sqrt{3} \approx 1.73$).

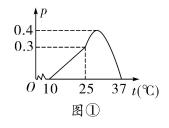


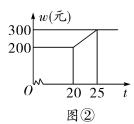

- 23. 小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
- (1)**温故**: 如图①,在 $\triangle ABC$ 中, $AD \bot BC$ 于点 D,正方形 PQMN 的边 QM 在 BC 上,顶点 P,N 分别在 AB,AC 上,若 BC = a,AD = h,求正方形 POMN 的边长(用 a,h 表示);
 - (2)操作:如何画出这个正方形 PQMN 呢?


如图②,小波画出了图①的 $\triangle ABC$,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在 AB 上任取一点 P',画正方形 P'Q'M'N',使点 Q',M' 在 BC 边上,点 N'在 $\triangle ABC$ 内,然后连接 BN',并延长交 AC 于点 N,画 $NM \perp BC$ 于点 M, $NP \perp NM$ 交 AB 于点 P, $PQ \perp BC$ 于点 Q,得到四边形 PQMN;

- (3)推理:证明图②中的四边形 PQMN 是正方形;
- (4)**拓展**:小波把图②中的线段 BN 称为"波利亚线",在该线上截取 NE=NM,连接 EQ、EM(如图③),当 $\angle QEM=90$ °时,求"波利亚线" BN 的长(用 a,h 表示).

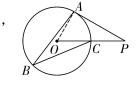
请帮助小波解决"温故"、"推理"、"拓展"中的问题.





- 24. 某农作物的生长率 p 与温度 $t(\mathbb{C})$ 有如下关系: 如图,当 $10 \le t \le 25$ 时可近似用函数 $p = \frac{1}{50}t \frac{1}{5}$ 刻画; 当 $25 \le t \le 37$ 时可近似用函数 $p = -\frac{1}{160}(t h)^2 + 0.4$ 刻画.
 - (1)求 h 的值;
 - (2)按照经验,该作物提前上市的天数 m(天)与生长率 p之间满足已学过的函数关系,部分数据如下:

生长率 p	0.2	0.25	0.3	0.35
提前上市的	0	5	10	15
天数 m(天)	U			


- 求: ①m 关于p 的函数表达式;
- ②用含t的代数式表示m;
- ③天气寒冷,大棚加温可改变农作物生长速度,大棚恒温 20℃时每天的成本为 100 元,计划该作物 30 天后上市.现根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600 元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到 20≤ t≤25 时的成本为 200 元/天,但若欲加温到 25< t≤37,由于要采用特殊方法,成本增加到 400 元/天,问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)

2019 浙江省嘉兴中考数学试题解析

- 1. A 【解析】: 实数 a 的相反数是-a, : -2019 的相反数是 2019.
- 2. C 【解析】将一个大于 10 的数用科学记数法表示为 $a \times 10^n$,其中, $1 \le a < 10$,n 为原数整数位数减 1. 则 $380000 = 3.8 \times 10^5$.
- 3. B 【解析】俯视图是从几何体的上面看所得到的视图,从这个几何体的上面看,可得到两排小正方形, 其中上排有 2 个,下排左侧有 1 个.
- 4. C 【解析】由折线统计图可知,2017 年签约金额比 2016 年签约金额少,则签约金额不是逐年增加,故A 错误,不合题意;与上一年签约金额相比,2015 年至 2016 年的签约金额增长量为 381.35-40.9=340.45 亿元,2018 年至 2019 年的签约金额增长量为 422.33-221.63=200.7 亿元, ∵340.45>200.7,则增长量最多的是 2016 年,不是 2019 年,故 B 错误,不合题意,C 正确,符合题意; ∵2018 年签约金额为 221.63 亿元,2017 年签约金额为 244.61 亿元, ∴ 244.61-221.63 × 100%=9.4%, ∴2018 年的签约金额比 2017 年降低了 9.4%, D 错误,不合题意.
- 5. D 【解析】: $\sqrt[3]{8}=2$, $2^0=1$,|-2|=2, ... 要使每行每列的两个数的和相等,则 $a=2^0=1$... $tan60^\circ=\sqrt{3}$ $\neq 1$, $-1\neq 1$, $0\neq 1$, $1^{2019}=1$,... $a=1^{2019}$.
- 6. A 【解析】 : a > b, : a + c > b + c, : c > d, : b + c > b + d, : a + c > b + d, 故 A 正确; 当 a = 1, b = 0, c = -1, d = -3 时, a c = 2, b d = 3, 则 a c < b d, 故 B 错误; 若 a = 1, b = -3, c = 0, d = -1, 则 ac = 0, bd = 3, : ac < bd, 故 C 错误; 当 a = 1, b = 0, c = -1, d = -2, 则 $\frac{a}{c} = -1$, $\frac{b}{d} = 0$, $: \frac{a}{c} < \frac{b}{d}$, 故 D 错误.
- 7. B 【解析】如解图,连接 OA,: $\angle AOC$ 与 $\angle ABC$ 是 \widehat{AC} 所对的圆心角和圆周角, $\therefore \angle AOC = 2 \angle ABC = 60^{\circ}$,: $AP = OA \cdot tan \angle AOC = 1 \cdot tan 60^{\circ} = \sqrt{3}$.

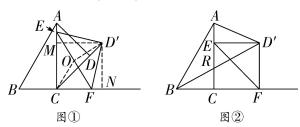
- 8. D 【解析】四匹马的价钱为 4x 两,六头牛的价钱为 6y 两,由"马四匹,牛六头,共价四十八两"得方程 4x+6y=48; 三匹马的价钱为 3x 两,五头牛的价钱为 5y 两,由"马三匹,牛五头,共价三十八两"可得方程 3x+5y=38,则可列方程组为 $\begin{cases} 4x+6y=48\\ 3x+5y=38 \end{cases}$
- 9.A 【解析】:四边形 OABC 是菱形,:AB//OC,:A(1, 2),B(3, 3),:点 B 可看作由点 A 先向右平移 2 个单位,再向上平移 1 个单位得到,:点 C 可看作由点 O 先向右平移 2 个单位,再向上平移 1 个单位得到,:点 C 的坐标为(2, 1).:图形 OA'B'C'与图形 OABC 关于 y 轴对称,:点 C'与点 C 关于 y 轴对称,:点 C'的 坐标为(-2, 1),:图形 OA''B''C'与图形 OA''B'C'关于原点 O 对称,:点 C''与点 C'关于原点 O 对称,:点 C''的坐标为(2, -1).

11.x(x-5) 【解析】提公因式得: $x^2-5x=x(x-5)$.

12. $\frac{2}{3}$ 【解析】从甲、乙、丙中任选两人,所有的等可能情况有(甲、乙),(甲,丙),(乙,丙),共 3 种,其中甲被选中的情况有 2 种, $\therefore P(甲被选中)=\frac{2}{3}$.

13. b<-a<a<-b 【解析】 $\because a$ >0,b<0, $\therefore a$ >b, $\because a$ +b<0, $\therefore a$ <-b,b<-a, $\because a$ >0, $\therefore -a$ <0<a, \therefore 这四个数的大小关系为: b<-a<a<-b.

14. $\frac{1}{2}$ 【解析】如解图,连接 OD,则 OD=r 为定值, $\because OC \bot CD$,


 $:: CD^2 = OD^2 - OC^2 = r^2 - OC^2$, $:: \exists OC$ 最小时,CD 最大,

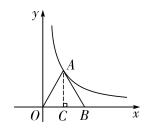
即当 $OC \perp AB$ 时,CD 最大,由垂径定理可知,此时 $CD = \frac{1}{2}AB = \frac{1}{2}$.

15. $\pm 4x$ (只填一个即可) 【解析】设括号内填的一次项为 mx,则一元二次方程有两个相等的实数根, $\therefore m^2$ $-4 \times 1 \times 4 = 0$,解得 $m = \pm 4$.

16. $24-12\sqrt{2}$; $36\sqrt{2}+24\sqrt{3}-12\sqrt{6}$ 【解析】设滑动后,点 D 的对应点为 D',点 E 的对应点为 E',点 F 的对应点为 F',如解图①,过点 D'作 $D'M \perp AC$ 于点 M, D' $N \perp CF$ 交 CF 的延长线于点 N.则 $\angle MD'N=90^\circ$, \because $\angle ED'$ $F=90^\circ$, \therefore $\angle ED'$ $M=\angle FD'$ N , $\because ED'$ =FD', $\angle EMD'$ $= \angle FND'=90^\circ$, \therefore $\triangle ED'$ $M \cong \triangle FD'$ N , \therefore D' M=D'N, \therefore 点 D' 在 $\angle ACF$ 的平分线上, \therefore 点 D 的运动路径是一段线段。在 $Rt\triangle ACD$ 中, $\because AC=12$, \angle $CAD=45^\circ$, \therefore $CD=ACsin \angle CAD=6\sqrt{2}$.设 EF 的中点为 O,连接 CO,OD' ,则 OC=OD',CD' $\leqslant 2OC$,当且 仅当点 O 在 CD'上时, CD' 最大,最大为 2OC=EF, $DE\perp AC$, \therefore 当点 E 从 A 运动到点 C 处时,点 D 先运动到最大位置,再回到点 D 处, \therefore 点 D 经过的路径为 $2EF-2CD=24-12\sqrt{2}$.在点 D 的运动过程中,设点 D 到直线 AB 的距离为 h, \therefore $S_{\triangle ABD}=\frac{1}{2}AB \cdot h$, \because 在 $Rt\triangle ABC$ 中,AC=12, $\angle BAC=30^\circ$, \therefore $AB=\frac{AC}{cos \angle BAC}=8\sqrt{3}$, $BC=\frac{1}{2}AB=4\sqrt{3}$. \therefore 当 h 最大时, $S_{\triangle ABD}$ 最大, 过点 C 作 CP \cap AB,过点 D 作 DR \cap CP \cap CP

第16题解图

17. 解:解答过程中第①、②步有误.


原式=
$$\frac{x-1}{(x+1)(x-1)} + \frac{2}{(x+1)(x-1)} = \frac{x+1}{(x+1)(x-1)} = \frac{1}{x-1}$$
.
: 当 $x = \sqrt{3} + 1$ 时,原式= $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$.

18. **解:** 添加条件: BE=DF.

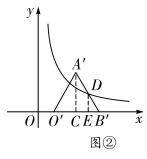
证明: 在矩形 ABCD 中,

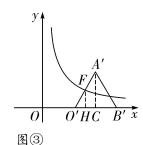
- $\therefore AB // CD$, AB = CD, $\therefore \angle ABE = \angle CDF$.
- $\therefore BE = DF, \quad \therefore \triangle ABE \cong \triangle CDF(SAS). \quad \therefore AE = CF.$
- 19. **解**: (1)如解图①,过点 *A* 作 *AC* ⊥ *OB* 于点 C.
- $:: \triangle OAB$ 是等边三角形, $:: \triangle OAB = 60^{\circ}, OC = \frac{1}{2}OB.$
- B(4, 0), OB = OA = 4, OC = 2, $AC = 2\sqrt{3}$, $A(2, 2\sqrt{3})$.

把点 $A(2, 2\sqrt{3})$ 代入 $y=\frac{k}{r}$ 得, $k=4\sqrt{3}$, **.**. 反比例函数的表达式为 $y=\frac{4\sqrt{3}}{r}$;

点 E.

第 19 题解图①


(2)(I)如解图②,点D是A'B'的中点,过点D作 $DE \perp x$ 轴于


由题意得 A'B'=4, $\angle A'B'E'=60$ °.

在 $Rt\triangle DEB'$ 中, B' D=2, $DE=\sqrt{3}$, B' E=1,

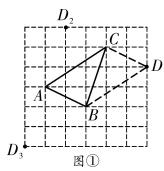
 $\therefore O' E=3.$

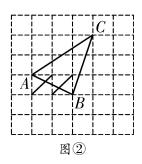
把 $y = \sqrt{3}$ 代入 $y = \frac{4\sqrt{3}}{x}$, 得 x = 4, ∴ OE = 4,

 $\therefore a = OO' = 1;$

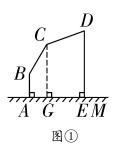
(II)如解图③,点F是A'O'的中点,过点F作FH $\bot x$ 轴于点H.

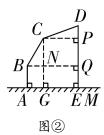
由题意得 A'O'=4, $\angle A'O'B'=60^\circ$.


在 $Rt\triangle FO'$ H 中, $FH=\sqrt{3}$, O' H=1.


把
$$y = \sqrt{3}$$
代入 $y = \frac{4\sqrt{3}}{x}$, 得 $x = 4$.

∴OH=4.∴a=OO'=3.综上所述,a=1 或 3.

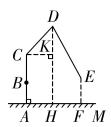

20. **解**: (1)如解图①,点 D_1 、 D_2 、 D_3 即为所求;


(2)如解图②所示.

- 21. 解: (1)中位数: 75分; (2)24×500=240人;
- (3)①从平均数来看,两个小区居民对垃圾分类知识掌握情况的平均水平相同.
- ②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定.
- ③从中位数看, B 小区至少有一半的居民成绩高于平均数.
- 22. **解**: (1)如解图①,过点 C作 $CG \perp AM$ 于点 G.
- $\therefore \angle DCG = 180^{\circ} \angle CDE = 110^{\circ} \therefore \angle BCG = \angle BCD \angle DCG = 30^{\circ}$.
- $AB \perp AM$, $DE \perp AM$, $CG \perp AM$,
- $\therefore AB//DE//CG$. $\therefore \angle ABC = 180^{\circ} \angle BCG = 150^{\circ}$.

∴ 动臂 BC 与 AB 的夹角 $\angle ABC$ 的度数为 150°;

(2)如解图②, 过点 C 作 $CP \perp DE$ 于点 P, 过点 B 作 $BQ \perp DE$ 于点 Q 交 CG 于点 N,


在 $Rt\triangle CPD$ 中, $DP=CD\times cos70^{\circ}=0.51$. 在 $Rt\triangle BCN$ 中, $CN=BC\times cos30^{\circ}=1.038$.

 $\therefore DE = DP + PQ + QE = DP + CN + AB = 0.51 + 1.038 + 0.8 = 2.348.$

如解图③, 过点 D 作 $DH \perp AM$ 于点 H, 过点 C 作 $CK \perp DH$ 于点 K,

在 Rt \triangle CKD 中,DK=CD \times sin50° =1.155.DH=DK+KH=3.155

 $∴DH-DE=0.807\approx0.8$ 米. ∴斗杆顶点 D 的最高点比初始位置高 0.8 米.

图③

23. (1)解: : 四边形 PQMN 为正方形,

$$\therefore PN//BC$$
, $\therefore \triangle APN \hookrightarrow \triangle ABC$, $\therefore \frac{NP}{BC} = \frac{AE}{AD}$, $\mathbb{P} = \frac{h - PN}{a}$ 解得 $PN = \frac{ah}{a + h}$;

- (2)证明: 由画法得, *∠QMN=∠PNM=∠PQM*=90°,
- :.四边形 POMN 为矩形,
- $:: N' \ M' \ \bot BC, \ NM \bot BC, \ :: N' \ M' \ //NM, \ :: \triangle BN' \ M' \ \backsim \triangle BNM.$

$$\therefore \frac{N' \ M'}{NM} = \frac{BN'}{BN}$$
,同理可得 $\frac{N' \ P'}{NP} = \frac{BN'}{BN}$. $\therefore \frac{N' \ M'}{NM} = \frac{P' \ N'}{PN}$.

- ::N' M' = P'N', ::NM = PN, ::四边形 PQMN 为正方形;
- (3)**解**:如解图,过点N作NR $\perp EM$ 于点R,

$$\therefore NE = NM$$
, $\therefore \angle NEM = \angle NME$, $\therefore ER = RM = \frac{1}{2}EM$.

$$\exists : \angle EQM + \angle EMQ = \angle EMQ + \angle EMN = 90^{\circ}, : \angle EQM = \angle EMN,$$

$$\exists : \angle QEM = \angle NRM = 90^{\circ}, NM = QM, : \triangle EQM \cong \triangle RMN(AAS).$$

$$\therefore EQ = RM. \therefore EQ = \frac{1}{2}EM.$$

$$\therefore \angle QEM = 90^{\circ}, \ \therefore \angle BEQ + \angle NEM = 90^{\circ}, \ \therefore \angle BEQ = \angle EMB,$$

$$\mathbb{X}$$
: $\angle EBM = \angle QBE$, $\therefore \triangle BEQ \hookrightarrow \triangle BME$. $\therefore \frac{BQ}{BE} = \frac{BE}{BM} = \frac{EQ}{EM} = \frac{1}{2}$.

设
$$BQ=x$$
, 则 $BE=2x$, $BM=4x$, $\therefore QM=BM-BQ=3x=MN=NE$.

$$\therefore BN = BE + NE = 5x \therefore BN = \frac{5}{3}NM = \frac{5ah}{3a + 3h}$$

第 23 题解图

24. 解: (1)把(25, 0.3)代入
$$p = -\frac{1}{160}(t-h)^2 + 0.4$$
,得 $h = 29$ 或 $h = 21$.

- h>25, h=29;
- (2)①由表格可知 m 是 p 的一次函数,

设
$$m=kp+n$$
,将(0.2, 0),(0.25, 5)代入得 $\begin{cases} 0.2k+n=0, \\ 0.25k+n=5, \end{cases}$ 解得 $\begin{cases} k=100, \\ n=-20. \end{cases}$

 $\therefore m$ 关于 p 的函数表达式为 m=100p-20;

②由(1)得,当
$$10 \le t \le 25$$
 时, $p = \frac{1}{50}t - \frac{1}{5}$,把 p 代入 $m = 100p - 20$ 得 $m = 100(\frac{1}{50}t - \frac{1}{5}) - 20 = 2t - 40$.

当 25
$$\leq$$
t \leq 37 时, $p=-\frac{1}{160}(t-29)^2+0.4$.把 p 代入 $m=100p-20$

得
$$m=100[-\frac{1}{160}(t-29)^2+0.4]-20=-\frac{5}{8}(t-29)^2+20;$$

③设利润为y元,则当 20 $\leq t \leq$ 25 时,

$$y = 600m + [100 \times 30 - (30 - m) \times 200] = 800m - 3000 = 1600t - 35000.$$

当 20≤t≤25 时,v 随着 t 的增大而增大,当 t=25 时,最大值 v=5000.

当 25≤*t*≤37 时,

$$y = 600m + [100 \times 30 - (30 - m) \times 400] = 1000m - 9000 = -625(t - 29)^2 + 11000.$$

- : a = -625 < 0,∴ 当 t = 29 时,最大值 y = 11000.
- :11000>5000,
- ∴ 当加温到 29 ℃时,增加的利润最大.